IPv6, is it really a good idea?

Jos Vrancken Fac. TBM, 30 May 2011

1

ICT, Faculty TPM, Delft University of Technology

Technische Universiteit Delft

New title: The Future of NAT (Network Address Translator)

Jos Vrancken Fac. TBM, 30 May 2011

What's the problem?

- IPv4 is depleted, something is going to change
- IPv6 adoption is a struggle
 - Incompatibility IPv6 IPv4
 - Application network dependencies
 - Chain dependencies
 - Metcalfe's law => critical mass problem
 - Immaturity of transition tools

Some observations

- 1995: two solutions to address scarcity one compatible (NAT), one not (IPv6)
- NAT: a tremendous success, IPv6 is still to become a success
- "NAT is ugly", breaks the End-to-End principle

NAT: Network Address Translation

Why is NAT considered ugly?

NAT breaks the

- Global address space
- End to End principle (simple network, just routing)

These principles intend to **make communication possible and simple**

But ...

- Global address space => global dependencies (making f.i. IPv6's introduction so hard)
- End-to-End: it's a prisoner's dilemma, everybody has to cooperate and behave decently
- \Rightarrow Both principles have been abandoned in practice \Rightarrow IPv6 will not restore them

A different principle: Networks should become Systems

What are systems?

- A system is anything that can be distinguished from its environment.
- It has
 - A boundary
 - An inside
 - An outside (= environment)
- It consists internally of subsystems, themselves systems (recursive notion!)

Why systems?

Black boxes with an interface:

Reducing complexity by concentrating dependencies, between inside and outside, in the boundary

For instance: the **names** used within the system: keep them local, make translations in the boundary.

A namespace gateway: a better NAT

ALG = Application Level Gateway

Why is this a better NAT?

Classical NAT drawbacks

- NAT box is a bottleneck
- Namespaces not fully separated
 > NAT cannot be nested
- Number of user limited by the 2byte TCP port number

Namespace gateway

- Can be distributed
- Namespaces fully separated
- Port limit only when communicating with the legacy IPv4 net

Example: the namespace gateway as an IPv6 transition tool

Why should people use name space gateways?

- Current NAT is a tremendous hurdle to any architectural improvement
- NAT + address markets still offer a huge growth potential for the Internet
- A pressing need to change will still take a long time

Conclusions

- The black-box-with-interface model is more futureand growth-proof than the global address space with the E2E principle
- Current NAT comes closest to the black-box model, no reason to abandon it
- A lot can still be improved within NAT
- A pressing need to change is still way into the future
- You can safely wait and see what will happen...

